Matrix Eigenproblem Approach for A Class of Positive Dimensional Multivariate Polynomial System Solving

نویسندگان

  • Kai Huang
  • Yu-zhen Huang
  • Wen-da Wu
چکیده

The matrix eigenproblem approach for zero-dimensional multivariate polynomial system solving has been studied. The purpose of this paper is to apply the approach to a class of positive dimensional multivariate polynomial system which is called pseudo zero-dimensional system. In this case we can decide its reducibility, and when it is reducible, a set of polynomial can be determined from the eigenvector of matrix constructed. The union of this set and the given system will yield a representation of a component of the given system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

TR-2004009: A Reduction of the Matrix Eigenproblem to Polynomial Rootfinding via Similarity Transforms into Arrow-Head Matrices

We modify the customary approach to solving the algebraic eigenproblem. Instead of applying the QR algorithm to a Hessenberg matrix, we begin with the recent unitary similarity transform into a triangular plus rank-one matrix. Our novelty is nonunitary transforms of this matrix into similar arrow-head matrices, which we perform at a low arithmetic cost. The resulting eigenproblem can be effecti...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Numerical approach for solving a class of nonlinear fractional differential equation

‎It is commonly accepted that fractional differential equations play‎ ‎an important role in the explanation of many physical phenomena‎. ‎For‎ ‎this reason we need a reliable and efficient technique for the‎ ‎solution of fractional differential equations‎. ‎This paper deals with‎ ‎the numerical solution of a class of fractional differential‎ ‎equation‎. ‎The fractional derivatives are described...

متن کامل

SOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS

In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006