Matrix Eigenproblem Approach for A Class of Positive Dimensional Multivariate Polynomial System Solving
نویسندگان
چکیده
The matrix eigenproblem approach for zero-dimensional multivariate polynomial system solving has been studied. The purpose of this paper is to apply the approach to a class of positive dimensional multivariate polynomial system which is called pseudo zero-dimensional system. In this case we can decide its reducibility, and when it is reducible, a set of polynomial can be determined from the eigenvector of matrix constructed. The union of this set and the given system will yield a representation of a component of the given system.
منابع مشابه
A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملTR-2004009: A Reduction of the Matrix Eigenproblem to Polynomial Rootfinding via Similarity Transforms into Arrow-Head Matrices
We modify the customary approach to solving the algebraic eigenproblem. Instead of applying the QR algorithm to a Hessenberg matrix, we begin with the recent unitary similarity transform into a triangular plus rank-one matrix. Our novelty is nonunitary transforms of this matrix into similar arrow-head matrices, which we perform at a low arithmetic cost. The resulting eigenproblem can be effecti...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملNumerical approach for solving a class of nonlinear fractional differential equation
It is commonly accepted that fractional differential equations play an important role in the explanation of many physical phenomena. For this reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equation. The fractional derivatives are described...
متن کاملSOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006